贾良权

作者:admin时间:2023-04-12 浏览:3630


个人简历  

贾良权,博士(后),副教授,硕士生导师。男,1983年生,2006年获安徽工程大学工学学位,2012年获中科院理学硕士学位,2015年获中科院理学博士学位,浙江大学博士后。发表论文十余篇;授权发明和新型专利8项。

先后主持和参与国家和省部级科研课题8项,主持和承担横向项目多项。


主要研究方向 

n 嵌入式系统设计及应用

n 集成电路设计与智能检测

n TDLAS 技术应用及其装备研发

n 机器视觉/深度学习技术应用

n 医学图像处理


主要承担的教学课程

本科生课程:EDA设计及应用、嵌入式系统设计及应用

研究生课程:虚拟仪器设计与数据采集技术  


代表性学术成果

1Yang Fu, Jia Liangquan*,Lin Chen,etal; DEAF: An adaptive feature aggregation model for predicting soil CO2 flux. Ecological Informatics. 2024, 102759.https://doi.org/10.1016/j.ecoinf.2024.102759

2Liangquan Jia 1,, Tao Wang 1,, Xiangge Li,etal.DFMA: an improved DeepLabv3+ based on FasterNet, multi-receptive field, and attention mechanism for high-throughput phenotyping of seedlings. Front Plant Sci. 2025 Jan 16;15:1457360. doi: 10.3389/fpls.2024.1457360

3Jia, Liangquan, Tao Wang, Yi Chen, Ying Zang, Xiangge Li, Haojie Shi, and Lu Gao. 2023. MobileNet-CA-YOLO: An Improved YOLOv7 Based on the MobileNetV3 and Attention Mechanism for Rice Pests and Diseases Detection Agriculture 13, no. 7: 1285. https://doi.org/10.3390/agriculture13071285

4Liangquan Jia , Fu Yang, Yi Chen.etal. Prediction of wetland soil carbon storage based on near infrared hyperspectral imaging and deep learning. Infrared Physics & Technology.https://doi.org/10.1016/j.infrared.2024.105287

5Zhikun Zhang. Qin xu , Liangquan Jia* ,etal. FSUNet: lightweight full-scale information fusion UNet for seed coat thickness measurement. Cogent Food & Agriculture .https://doi.org/10.1080/23311932.2024.2424928

6Jia, Liangquan, Weiwei Zu, Fu Yang, Lu Gao, Guosong Gu, and Mingxing Zhao. 2023. Estimating Organic Matter Content in Hyperspectral Wetland Soil Using Marine-Predators-Algorithm-Based Random Forest and Multiple Differential Transformations Applied Sciences 13, no. 19: 10693. https://doi.org/10.3390/app131910693

7Jia Liangquan; Yawen Wang; Ying Zang ,etal,MobileNetV3 With CBAM for Bamboo Stick Counting. IEEE access, vol. 10, pp. 53963-53971, 2022

8Lu Gao, Ying Zang, Liangquan Jia*, Research on the Seed Respiration CO2 Detection System Based on TDLAS Technology, International Journal of Optics, vol. 2023, Article ID 8017726, 13 pages, 2023.

9Wei Y K , Jia L Q *, Fang Y Y , et al. Formation and superconducting properties of predicted ternary hydride ScYH6 under pressures[J]. International Journal of Quantum Chemistry .2020-09-09 , DOI: 10.1002/qua.26459

10Chen, Jiuying, Pengxiang Cui, Chuncheng Zhou, Xiaoya Yu, Haohao Wu, Liangquan Jia*, Mei Zhou, Huijing Zhang, Geer Teng, Sai Cheng, and et al. 2023. Detection of CO2 and CH4 Concentrations on a Beijing Urban Road Using Vehicle-Mounted Tunable Diode Laser Absorption Spectroscopy Photonics 10, no. 8: 938. https://doi.org/10.3390/photonics10080938

11Ye, Sitan, Haiyong Weng, Lirong Xiang, Liangquan Jia*, and Jinchai Xu. 2023. Synchronously Predicting Tea Polyphenol and Epigallocatechin Gallate in Tea Leaves Using Fourier TransformNear-Infrared Spectroscopy and Machine Learning Molecules 28, no. 14: 5379. https://doi.org/10.3390/molecules28145379

12Shi, Huancong, Xulei Yao, Shijian Lu, Yuanhui Zuo, Tao Zheng, and Liangquan Jia*. 2023. Photocatalytically Active Semiconductor Cu3P Unites with Flocculent TiN for Efficient Removal of Sulfamethoxazole Catalysts 13, no. 2: 291. https://doi.org/10.3390/catal13020291

13Shi, Huancong, Yingli Ge, Shijian Lu, Jiacheng Peng, Jing Jin, and Liangquan Jia*. 2023. Catalytic CO2 Desorption Study of Tri-Solvent MEA-EAE-DEEA with Five Solid Acid Catalysts Catalysts 13, no. 6: 975. https://doi.org/10.3390/catal13060975

14】贾良权,祁亨年,胡文军等.种子呼吸CO_2浓度检测系统[J].光学精密工程,2019,27(06):1397-1404.

15】贾良权,祁亨年,许琴基于激光吸收光谱技术的种子活力高效测量系统, ZL201810608900.2 (授权发明专利)

16】贾良权,祁亨年,许琴高璐一种自动化单粒种子活力分选系统, ZL 201920795365.6 (授权发明专利)

17】贾良权,高璐,许琴;一种新型高效环保滤沙机,ZL202110969037(授权发明专利)

18】贾良权,高璐,黄旭,等;一种土壤碳通量测量系统 ,ZL202110696289(授权发明专利)

19】中心医院药房药品采购集中管理系统. 2024SR2096542(软件著作权)

20】胆囊癌根治术后预测软件. 2025SR0423945(软件著作权)


主要科研项目

主持:

1.湖州市数字化森林碳汇监测建设与示范,湖州市重点研发择优委托项目(2021ZD2003)2022-2024

2.基于TDLAS技术的土壤碳通量检测方法及其装置研发,浙江省公益性项目,(GF22C164008),2022-2024

3.基于波长调制-TDLAS技术的“两杂”种子活力无损检测机理及方法研究,国家自然科学基金(31701512),2018-2020

参与:

1. 便携式水稻种子活力快速无损检测装置研发及示范,浙江省公益性项目(TGN23C130011),2023-2025

2.-小龙虾高效种养模式关键技术及其低碳通量模式研究,浙江省公益性项目 (GF22C194143),2022-2024

3.种子芽根长度自动化检测关键技术研究(2021GZ30),湖州市公益项目,2022-2024

4.水稻高效制种关键技术研发-基于 TDLAS和高光谱成像技术的水稻种子活力快速无损检测方法及装备研发,浙江省重点研发计划项目(2019C02013),2019- 2021

6.种子活力与其特征光谱的定量关系研究,浙江省教育厅(Y201941626),2019-2021

7.基于云计算、大数据等新技术的个性化学习应用研究-教育大数据智能采集、处理与个性化学习平台研发及应用示范,浙江省重点研发计划项目(2017C03047),2017- 2019


联系方式

Email:02426@zjhu.edu.cn




打印: